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Abstract A model is presented herein for predicting the

evolution of numerous cracks on multiple length scales, the

objective of such a model being to develop the capability to

predict failure of structural components to perform their

intended tasks. Such a capability would then be useful as a

predictive tool for designing structural components so as

not to fail, but rather to succeed in performing their

intended tasks. The model developed herein is somewhat

involved, being based in continuum mechanics and ther-

modynamics, but is nevertheless expected to be cost

effective (wherever sufficient accuracy permits) when

compared to more costly experimental means of deter-

mining component life. An essential ingredient within the

context of the model is that cracks must develop on widely

differing length scales. Where this is observed to occur in

nature, which is surprisingly often, there are potential

simplifications over more generally described but practi-

cally untenable approaches, that can lead to (at least partly)

computational multiscale algorithms capable of assimilat-

ing failure due to multiple cracking with a high degree of

accuracy. The model presented herein will be briefly de-

scribed within a mathematical framework, and an example

problem will be presented that is representative of certain

currently relevant technologies.

Introduction

When a crack is seen to extend in a solid, it is well known

that a certain amount of energy is irreversibly lost from the

object. Continued crack growth in a structural part is not

indefinitely sustainable: component failure, normally due

to a resulting instability, is the ultimate irrevocable end of

this process. This is not a new concept, having been

understood in some measure since ancient times. Indeed,

the effects of fractures were discussed in technical terms by

Da Vinci in the 16th century [1], as well as by Galileo [2]

in the first scientific book on the mechanics of deformable

bodies. However, the use of the mathematical concept of

stress is less than two centuries old, and resulting theories

capable of capturing the physics of fracture are little more

than a century old. Perhaps the first great development in

understanding the mechanics of fracture is due to Griffith

[3], who postulated that crack extension will occur in an

object when

G � GC ð1Þ

where G is the energy released per unit area of crack

produced, and GC is assumed to be a material constant.

Within the context of modern day continuum mechanics,

this allows one to include within the model of an initial

boundary value problem a criterion for describing when the

boundary, either internal or external, will change with time,

and perhaps even how it will evolve.

As is now well known, Griffith’s monumental proposal

embodied by inequality (1) is possessed of some short-

comings. While it is quite adequate for some classes of

solids, including many linear elastic ones, it is not accurate

for others. Nevertheless, the concept is striking in sim-

plicity, so much so that most models for improving on
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Griffith’s criterion may in some way or another be said to

be generalizations of Griffith’s approach. Indeed, the sec-

ond half of the 20th century is replete with an enormous

body of literature intent upon improving our ability to

predict crack growth in solids.

Progress notwithstanding, it would be presumptive to

say that the ability to predict crack growth is completely

resolved. Indeed, currently available models are still often

shown to be quite inaccurate when compared to experi-

mental data even for a single crack growing in a homo-

geneous solid. Oftentimes this shortcoming may be traced

to the bulk material behavior of the solid in question. For

example, in viscoelastic solids it is not uncommon to dis-

cover that while the general idea embodied in Griffith’s

model may still hold, the experimental data suggest that the

critical energy release rate, GC, is perhaps better repre-

sented as a material parameter depending on the loading

rate or even the load history, rather than a material con-

stant.

Furthermore, even for cases wherein substantive

experimental data have demonstrated that the Griffith cri-

terion is accurate for predicting the extension of a single

crack in a solid, significant research remains to be done to

show that the concept is accurate when the concept is

applied to the prediction of the extension of multiple

cracks, much less numerous cracks.

Nevertheless, we live in an age wherein structural parts

are commonly designed and placed into service that are

observed after component failure to have undergone the

development of numerous cracks, often on widely different

length scales. Examples of this phenomenon occur in such

applications as virtually any and all aerospace structural

composites, whether they be metallic or plastic (or both).

Thus, carbon/epoxy laminates in wings, metal matrix

composites in fan blades, glass mat thermoplastics,

elevated temperature ceramic/ceramic composites—all are

seen to develop unavoidable fields of cracks. And lest the

reader has not checked out these applications lately, one

can find an application much closer to every day life.

Consider the roadway that we drive to work on every day,

whether it be cementitious or asphaltic concrete. Rest

assured that it is absolutely filled with cracks, on length

scales running from microns to meters in scale. We live in

the age of enlightenment: common sense demands that

where such phenomena are observed, we should be able to

predict them (the alternative, to avoid cracking, is not

tenable, as it is apparent that in heterogeneous solids sin-

gular points cannot be avoided, so that if a fly lands on the

part in its virgin state, cracks will grow!). Clearly, accurate

models would create the potential for enormous cost sav-

ings to society, not to mention lives extended.

Thus it is that the state of research in solids has in the

past decade turned to the prediction of the evolution of

multiple cracks in structural parts. This is at least in part

due to the development of computers with more and more

speed and size. So perhaps we should just wait for the chip

technology to simply ‘‘catch up’’. This argument can be

laid to rest rather quickly in most cases by considering the

following thought experiment. For a typical composite

laminate, cracks can be seen in post mortem to number as

many as tens of thousands per cubic meter. Conversely,

computational models tell us that accurate simulation of a

single crack extending in space and time requires thou-

sands of finite elements, thus leading to a scenario that is

computationally untenable were one to simply try the

‘‘brute force’’ approach of modeling every crack (on every

length scale) at one time. Therefore, egotism must be

tempered with a dose of reality: some error must be

accommodated in order to obtain results. This then is at the

heart of the problem to be described herein: to obtain

sufficiently accurate results so that designers can use the

modeling approach without requiring costs that exceed

those encumbered with the experimental approach. It is

hoped that the approach proposed herein is a step in that

direction.

Before moving on to the modeling approach proposed

herein, it is instructive to consider an alternative approach,

partly because it is quite ingenious, but also because it

actually leads the way to the methodology proposed herein.

This alternative, sometimes called ‘‘continuum damage

mechanics’’, perhaps grew out of research performed by

Eshelby in the 1950s [4]. His interest was related to

molecular scale voids such as dislocations, but the concept

of homogenization utilized by him (as well as Hashin [5]

and Hill [6] for undamaged media shortly thereafter) lent

itself well to the idea that larger scale inclusions, including

cracks, could somehow be incorporated into constitutive

equations as something like an internal variable (or, in the

case of phenomenological plasticity, plastic strain) when

viewing the object at a distance far enough away that each

crack cannot be seen. This approach gained widespread

interest in the 1970’s, and is even still actively pursued

today. Perhaps one reason that such an approach is so

inviting is that only a single scale analysis, that of the scale

of the structural part, may be necessary to make predictions,

and until recently computers were hard pressed to consider

multiple scales simultaneously, especially in three dimen-

sions. Unfortunately, the continuum damage mechanics

approach is beset by several fundamental shortcomings that

cannot be mitigated: (1) they require that complicated and

expensive constitutive tests be performed on a length scale

that is large enough to average out the effects of micro-

cracks on the boundary of the constitutive specimen; (2) as a

result of the incorporation of the damage into an evolving

phenomenological parameter, the resulting constitutive

equations are nonlinear; and (3) the averaging process at a
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length scale that is large compared to the length scale of the

microcracks necessarily means that all physical parameters

that exist on smaller length scales cannot be treated as

design parameters unless further (exhaustive and expen-

sive!) experimentation is pursued. For example, if one is

attempting to model an asphaltic concrete roadway, the

continuum damage mechanics approach can be applied to

produce a nonlinear viscoelastic constitutive model (that

includes a damage parameter accounting for microcracks).

But if this approach is taken, such important design

parameters as volume fractions of fines, aggregate size, and

aggregate shape cannot be modeled without performing

expensive and complicated constitutive experiments with

various mixtures of each of these.

It is the last of these shortcomings of the continuum

damage mechanics approach that is particularly trouble-

some, so much so that researchers have in the last decade

sought more robust modeling approaches. Indeed, it is

precisely the continuum damage mechanics approach that

may have provided the spark necessary to ignite interest in

a multiscaling approach to the problem. The necessity to

perform so many experiments invariably has led some

researchers to attempt to design ‘‘computational simula-

tions’’ of the experiments needed to characterize the con-

tinuum damage models [7]. This of course requires that at

the small scale required to perform simulations, one is led

to the unavoidable conclusion that evolving internal

boundaries must be incorporated into the simulation at this

length scale. Furthermore, a representation of the constit-

utive behavior on the next larger length scale means that

some sort of averaging process must be deployed in order

to compare the computational simulation to the continuum

damage model (or equivalently, the experiments utilized to

derive it). This then supplies the starting point for a mul-

tiscale model that includes cracks on different length

scales. The details of one such approach are reviewed in

the following section.

Analysis of the object on the microscale

Consider an approach proposed herein that can be used on

any number of length scales, ll, observed in a solid object.

The number of scales, n, utilized is determined by the

physics of the problem on the one hand, and the amount of

computational speed and size available on the other. To

that end, consider a solid object with a region wherein

microcracks are evolving on the smallest length scale

considered, l1, as shown in Fig. 1. While it is not necessary

(or even always correct) that a representative volume of the

object on this length scale be accurately modeled by

continuum mechanics, it will be assumed that this is the

case in the current paper in order to simplify the discussion.

Suppose that the object can be treated as linear viscoelastic,

again for simplicity, so that the following initial boundary

value problem may be posed:

(a) conservation of linear momentum

~r � ~rl þ q~f ¼ 0 8~xl 2 Vl; ð2Þ

where ~rl is the Cauchy stress tensor defined on length

scale l, q is the mass density, and ~f is the body force

vector per unit mass. Note that inertial effects have been

neglected, implying that the length scale of interest is small

compared to the next larger length scale, thus neglecting

the effects of waves at this scale on the next scale up.

(b) strain–displacement equations

~el �
1

2
~r~ul þ ð ~r~ulÞT
h i

; ð3Þ

where ~el is the strain tensor on the length scale l, and~ul is

the displacement vector on the length scale l. Note that we

have taken the linearized form of the strain tensor for

simplicity, although a nonlinear form may be employed

with out loss of generality.

(c) constitutive equations

~rlð~xl; tÞ ¼ Xs¼t
s¼�1 ~elð~xl; sÞ

� �
; ð4Þ

where~xl is coordinate location in the object on the length

scale l, which has interior Vl and boundary ¶Vl. The

above description implies that the entire history of strain at

any point in the body is mapped into the current stress,

which is termed a viscoelastic material model. Because

only the value of strain (the symmetric part of the defor-

mation gradient is used in this model) is required at the

point of interest, it is sometimes called a simple (or local)

model [8]. Note that a local elastic material model, such as

Hooke’s law [9], is a special case of Eq. (4).

Fig. 1 Two scale problem with cracks on both length scales
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Equations (2)–(4) must apply in the body, together with

appropriate initial and boundary conditions. These are then

adjoined with a fracture criterion that is capable of pre-

dicting the growth of new or existing cracks anywhere in

the object. There are multiple possibilities, but for example

we could take the Griffith criterion given by inequality (1)

above. The above then constitutes a well posed boundary

value problem, albeit nonlinear due to the crack growth

criterion (perhaps as well as the constitutive model (4)).

Solving this problem even for simple geometries is in

itself a difficult challenge, as anyone who has every at-

tempted to do so will attest. Nevertheless, assume that by

some means (most likely computational) a solution can be

obtained for the boundary conditions, geometry and precise

form of constitutive Eq. (4) at hand. Assume furthermore

that the cracks that are predicted within the model dissipate

so much energy locally that they may have further dele-

terious effects on the response at the next larger length

scale. As an example, the so-called microcracks may in

some way influence the development or extension of one or

more macrocracks on the next larger length scale, l2. It will

be assumed that the cracks on the next larger length scale

are much larger than those on the current scale, and that

this restriction applies to all length scales for cracks in the

object of interest:

llþ1 � ll l ¼ 1; � � � ; n; ð5Þ

where n is the number of different length scales observed in

the solid. Note that the above restriction is a necessary

condition (but not sufficient) for the multiscale methodol-

ogy proposed herein to produce reasonably accurate pre-

dictions on the larger length scale(s). If this condition is not

satisfied, as in the case of a so-called localization problem,

then there may indeed be no alternative to performing an

exhaustive analysis at a single scale that takes into account

all of the asperities simultaneously.

Connecting the microscale to the macroscale

In order to perform an analysis of the solid on the next

length scale up from the local scale (termed the macroscale

herein for simplicity), it is necessary to find a means of

linking the state variables predicted on the local scale to

those on the macroscale. Of course, the state variables at

the local scale are predicted at an infinite collection of

material points in the local domain Vl +¶Vl, so that there is

plenty of information available to supply to the next larger

length scale. However, the objective herein is to find an

efficient means of constructing this link without sacrificing

too much accuracy. In other words, it is propitious to utilize

the minimum data obtained at the local scale necessary to

make a sufficiently accurate prediction at the macroscale.

One way is to link the local scale to the macroscale via the

use of mean fields. To see how this might work, consider

the following mathematical expansion for the macroscale

stress in terms of the local scale stress:

~rlþ1 ¼ �~rl þ
X1
j¼1

1

Vl
�~x
�� ��j

Z

Vl

ð~rl � �~rÞ~xj jjdV ; ð6Þ

where

�~rl �
1

Vl

Z

Vl

~rldV ; ð7Þ

is the volume averaged (or mean) stress at the local scale,

and it is assumed that the local coordinate system is set at

the geometric centroid of the local volume. Note that since

the local domain Vl +¶Vl can be placed arbitrarily within

the domain on the next larger length scale, Vl+1 +¶Vl+1, the

mean stress, �~rl, is a continuously varying function of

coordinates, ~xlþ1, on the next larger length scale l +1, as

shown in Fig. 1. Note also that the terms within the sum-

mation in Eq. (6) represent higher area moments of the

stress tensor.

Now, it may be said without loss of generality that local

scale conservation of momentum Eq. (2) also applies to the

global scale (assuming that quasi-static conditions still hold

at this length scale):

~r � ~rlþ1 þ q~f ¼ 0 8~xlþ1 2 Vlþ1: ð8Þ

By using Eq. (6), it can be shown that

limll=llþ1!0ð~rlþ1Þ ¼ �~r; ð9Þ

and Eq. (8) reduces to the following:

~r � �~rl þ q~f ¼ 0 8~xlþ1 2 Vlþ1: ð10Þ

The similarity between Eqs. (2) and (10) is sufficiently

striking that one is immediately tempted to use the same

modeling algorithm on both length scales. This indeed is

the approach that will be taken herein, but it must neces-

sarily be said that Eq. (10) is only exact in the limit, i.e.,

Eq. (9) is a sufficient condition for Eq. (10) to be exact.

However, in all real circumstances Eq. (9) cannot be sat-

isfied, so that some error must necessarily be introduced by

utilizing approximate Eq. (10) in lieu of exact Eq. (10).

The use of Eq. (10) is termed herein a ‘‘mean field

theory’’ because the higher order terms that are dropped

from Eq. (6) are essentially higher area moments of the

local scale stress. Thus, the macroscale analysis is
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performed only in terms of the mean stress, �~r. Note that in

cases wherein there is localization induced by damage or

large strain gradients, one or more of the higher order terms

will not be negligible. In this case, a mean field theory is no

longer accurate, and a nonlocal approximation (including

one or more of the higher order terms in Eq. (6)), or even a

full field analysis performed simultaneously on all length

scales may be necessary in order to obtain reasonable

accuracy. However, the necessity for converting to this

procedure may be monitored by calculating the higher

order terms in Eq. (6) after each time step during the local

scale analysis.

Now consider the standard deviation of the local scale

stress, given by

~rSD
l �

1

Vl

Z

Vl

ð~rl � �~rlÞ2dV : ð11Þ

In an object in which the standard deviation of all of the

state variables is small compared to their respective means

is termed in this paper to ‘‘statistically homogeneous’’

(this, of course, implies that any singular points are

bounded when integrated over the volume). It can also be

shown that when Eq. (9) is satisfied, the standard deviation

of the local scale stress, given by Eq. (11), goes to zero.

Therefore, in many cases it is sufficient for the object to be

statistically homogeneous at the local scale in order for

Eq. (10) to be an accurate representation at the macroscale.

One implication of this result is that the microcracks con-

tained within the local volume must be statistically

homogeneous in location and orientation. If this is not the

case, then higher order moments will necessarily have to be

included at the macroscale [10].

Now note that, so long as any tractions on the crack

faces are self equilibrating, Eq. (2) may be used to show

that [11–13]

�~rl ¼
1

Vl

Z

l

ð~rl �~nlÞ~xldS; ð12Þ

where ~nl is the unit outer normal vector on the local

boundary, ¶Vl. Note that the boundary averaged stress

given in Eq. (12) actually is physically more palatable than

the volume averaged stress given in Eq. (7), as it is com-

mensurate with the original definition of stress, as defined

by Cauchy [26] to act on a surface.

The fact that the volume averaged stress is equivalent to

the boundary averaged stress is of little importance when

there are no cracks. However, when cracks grow and

evolve with time, it becomes a very important aspect of the

homogenization process, as will now be shown by con-

sidering the homogenization process for the strain tensor.

It can be shown by careful employment of the divergence

theorem that

�~el ¼ ~elþ1 þ ~alþ1; ð13Þ

where

�~el ¼
1

Vl

Z

Vl

~edV ; ð14Þ

is the mean strain at the local scale

~elþ1 ¼
1

Vl

Z

@V E
l

1

2
~ul~nl þ ð~ul~nlÞT
h i

dS; ð15Þ

is the boundary averaged strain on the initial (external)

boundary of the local volume, ¶Vl
E, and

~alþ1 ¼
1

Vl

Z

@V I
l

1

2
~ul~nl þ ð~ul~nlÞT
h i

dS; ð16Þ

is the boundary averaged strain on the newly created

(internal) boundary due to cracking, ¶Vl
I, and is called a

damage parameter [4, 14]. Since kinematic Eq. (15) is

consistent with kinetic Eq. (12), it is reasonable to con-

struct constitutive equations at the macroscale in terms of

these two variables, rather than in terms of volume aver-

ages. This is in striking contrast to the approach taken

when there are no microcracks. In this case there is no

difference between boundary averages and volume aver-

ages, as can be seen from the above equations. Neverthe-

less, using Eq. (15) and the divergence theorem, it can be

shown that

~elþ1 ¼
1

2
~r~ulþ1 þ ð ~r~ulþ1ÞT
h i

; ð17Þ

which can be seen to be similar in form to local Eq. (3).

The construction of a homogenized macroscale initial

boundary value problem, similar to that posed in Eqs. (2)–

(4), is now nearly complete, as Eq. (10) replaces Eq. (2),

and Eq. (17) replaces Eq. (3) at the macroscale. It remains

to construct constitutive equations at the macroscale. Were

one to utilize the continuum damage mechanics approach,

it would be sufficient to simply postulate constitutive

equations of the form:

~rlþ1ð~xlþ1; tÞ ¼ Xs¼t
s¼�1 ~elþ1ð~xlþ1; sÞ; að~xlþ1; sÞ

� �
: ð18Þ

The precise nature of this equation would then be deter-

mined by some curve fitting scheme either to experimental

data provided from macroscale experiments, or the
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predictions made at the local scale. While this approach

may be taken, as mentioned above, it removes the input

parameters at the local scale from the design process.

Therefore, it is preferable to take a multiscaling approach.

Instead, Eq. (18) is obtained by direct substitution of

local scale constitutive Eq. (4) into the volume averaged

stress Eq. (7). The precise nature of the resulting equation

will be depend on the choice of a constitutive model. As an

example, consider the case wherein the local scale con-

stitutive behavior is linear nonaging viscoelastic:

~rlð~xl; tÞ ¼
Z t

�1

~~Elð~xl; t � sÞ @~elð~xl; sÞ
@s

ds; ð19Þ

where ~~Eð~xl; tÞ is the relaxation modulus at the local scale.

Direct substitution of Eq. (19) into Eq. (7), and subsequent

careful utilization of Eqs. (6), (9), and (12) through (16)

will result in a constitutive description at the macroscale

that is of the following form [15]:

~rlþ1ð~xlþ1; tÞ ¼
Z t

�1

~~Elþ1ð~xlþ1; t � sÞ @~elþ1

@s
ds; ð20Þ

where

~~Elþ1ð~xlþ1; tÞ �
1

Vl

Z

Vl

~~Eð~xl; t � sÞdV ; ð21Þ

is the volume average of the relaxation modulus at the local

scale, and is dependent on the damage incurred in the RVE

at this scale, thereby implying that the material model

described in Eq. (20) is nonlinear.

It is now apparent that macroscale Eqs. (10), (13)–(16),

and (19) correspond to local scale Eqs. (2)–(4), so that a

similar algorithm may be utilized for the analysis on both

scales. The significant difference is that the introduction of

cracks at the local scale results in a more complex and

inherently nonlinear formulation of the constitutive equa-

tions at the macroscale. This then completes the description

of the homogenization process and the resulting macro-

scale initial boundary value problem.

Fracture model for viscoelastic media

As mentioned in the introduction, there are several short-

comings of the Griffith criterion. First, it is often found to

be inaccurate for viscoelastic media. Second, it is not

convenient to utilize in a computational algorithm, which

may be a necessary byproduct of modeling multiple cracks

simultaneously. For these reasons, a different approach is

taken herein for predicting crack growth in viscoelastic

media. In the present paper, a cohesive zone model is

utilized instead of the Griffith criterion. Models of this type

are not new, having been introduced many years ago by

Dugdale [16] and Barenblatt [17]. Initially at least, a pri-

mary motivation of these models was to account for duc-

tility that occurs in many materials, a phenomenon that is

not generally captured well by the Griffith criterion.

Unfortunately, cohesive zone models suffer from several

shortcomings that have inhibited their deployment until

recently. These are essentially related to the inability to

measure directly the material parameters necessary to

characterize a particular cohesive zone model. Further-

more, a cohesive zone model is normally deployed in such

a way that it is necessary to know where the crack will

propagate a priori. For these reasons, cohesive zone models

are only now finding widespread usage.

On the other hand, cohesive zone models are endowed

with several significant strengths. Firstly, they are quite

conveniently deployable into a finite element code by

simply joining two or more subdomains with self equili-

brating tractions, so that the domain may be treated as

simply connected, and then allowing the tractions to relax

to zero as a function of one or more observed state vari-

ables during problem solution, thereby resulting in the

production of new surface area. Secondly, cohesive zone

models can be formulated in such a way that they can more

accurately capture fracture phenomena in some media than

can the Griffith criterion. For example, it is often observed

in viscoelastic media that the critical energy release rate

required for crack extension is rate dependent.

Recently, Allen and Searcy [18, 19] have produced a

cohesive zone model for some viscoelastic media that is

formulated in such a way that the material parameters

required to characterize the cohesive zone model can be

obtained directly from microscale experiments. Further-

more, this model is inherently two scale in nature in that it

utilizes the solution to a microscale scale continuum

mechanics problem, together with a homogenization the-

orem to produce a cohesive zone model on the next larger

length scale. The model has also been shown to be con-

sistent with advanced fracture mechanics, in that the

cohesive zone requires a nonstationary critical energy

release rate in order for a crack to propagate [20–22].

This model will not be reviewed in detail herein since it

has already been reported in the literature. However, a brief

review is given here. As shown in Fig. 2, the cohesive zone

is postulated to be represented by a fibrillated or crazed

zone that is small compared to the total cohesive zone area.

The length scale of this IBVP is one length scale below that

of the smallest local scale required in the multiscale

problem. In this paper we term this the microscale, and

arbitrarily assign the value l =1 to this length scale. The
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solution to this initial boundary value problem (with

geometry as shown in Fig. 2, and governing equations

identical to Eqs. (2)–(4)) has been obtained and homoge-

nized, thus leading to the following traction–displacement

relation in the cohesive zone [18]:

~T ¼
~d
d0

ð1� aÞ
Zs¼1

s¼0

Eðt � sÞ @k
@s

ds 8~x 2 @V1; ð22Þ

where E(t) is the uniaxial viscoelastic relaxation modulus

of the undamaged cohesive zone material, ¶V1 is the part of

the boundary on which cohesive zones are active, ~d is the

crack opening displacement vector in the coordinate sys-

tem, aligned with the crack faces, k is the Euclidean norm

of the crack opening displacement vector, and a is the

damage parameter, which in this case degenerates to a

scalar, defined by

a �
A0 �

Pnf

k¼1

Ak

A0

; ð23Þ

where A0 is the undamaged planform cross-sectional area

of a representative area of the cohesive zone, and nf is the

number of fibrils contained in the representative area. It can

be seen that when all of the fibrils in a representative area

fracture, the damage parameter a goes to unity and the

traction vector in Eq. (20) becomes zero, thereby inducing

crack propagation. Note that the damage parameter, a, does

not exist on the smallest length scale. It appears as a natural

byproduct of the homogenization process linking this scale

to the next larger scale. This concept is not unlike the

concept of temperature, which does not exist at the

molecular scale, but arises as an outcome of kinetic

motions averaged up to the continuum scale.

We should note herein that the damage parameter for this

scale is a scalar, unlike that produced at the other length

scales, as defined in Eq. (16). This is due to the fact that for

the case of a cohesive zone the homogenization process

must be slightly altered to perform an area average rather

than a volume average, as described in the previous section.

In this case, the limit is taken as the dimension normal to the

plane of the cohesive zone goes to zero, thereby, reducing

the homogenized cohesive zone to a traction–displacement

relation, rather than a stress–strain relation.

The next section describes how the cohesive zone model

may be implemented to a multiscaling algorithm for per-

forming analyses of structural components undergoing

damage on multiple length scales.

Formation of a multiscale algorithm

The approach detailed above may be used to develop a

multiscale algorithm for obtaining approximate solutions to

problems containing multiple cracks growing simulta-

neously on widely differing length scales. This is accom-

plished by constructing a time stepping algorithm in which

the global solution is first obtained for a small time step,

assuming some initially damaged (or undamaged) state, as

shown in Fig. 3. The global solution for this time step is then

utilized to obtain solutions for each integration point at the

local scale, using the state variables obtained as output from

the global analysis to obtain the solution at the local scale.

The results for each integration point are then homogenized

to produce the global constitutive equations to be used on the

next time step at the global scale. This procedure is

RVE

Viscoelastic Fibrils

Local Scale

Microscale

2
1x

2
2x

2
3x

Damaged zone

Crack tip

1
1x

1
2x

1
3x

Fig. 2 Two scale problem

showing a cohesive zone at the

microscale
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essentially an operator splitting technique, assuming that

there is one way coupling between the two length scales.

Sufficient accuracy can usually be obtained by this method if

successively smaller time steps are employed until conver-

gence is obtained. Details of this approach may be found in

Zocher and Allen [23] and Foulk et al. [24].

In principle, the approach described herein can be uti-

lized on as many (continuum) length scales as necessary in

order to solve complex problems. However, the limits of

continuum scales in nature (10–10 m < l < 103 m), and the

requirement that the length scales be broadly separated, as

given by inequality (5), lead one to the conclusion that only

about five, or perhaps six length scales are physically

possible. On the other hand, depending on the complexity

of the given problem, only about three computational

scales are practical with current computer capacities. For-

tunately, there are few problems of current technological

significance that require more than about three computa-

tional scales (there is generally no limitation on the number

of analytic scales, as these require little computation, but

analytic solutions, unlike the cohesive zone model de-

scribed in the previous section, are not often attainable).

The author and coworkers have been able to obtain solu-

tions on a desktop computer by this technique using as

many as four scales simultaneously (although it must be

admitted that two of the scales were analytical) Phillips

et al. [25]. For simplicity, a three scale problem is illus-

trated in Fig. 4.

An example problem

Consider an example problem, as shown in Fig. 5. The

global object is an axisymmetric thick-walled pressure ves-

sel subjected to an internal pressure. At the local scale the

object is composed of unidirectional fibers imbedded in an

isotropic matrix, as shown in the figure. The fibers are so

small compared to the global scale that it is assumed to be

sufficiently accurate to use a unit cell with periodic boundary

conditions instead of an RVE, thereby producing improved

computational efficiency at the local scale. Cracks may

grow, but only at the interface between the fibers and matrix

at the local scale. It is assumed that no cracks are present at

the global scale. Figures 6, 7 show the evolution of cracking

at three radial and three circumferential locations, respec-

tively, in the analysis. Figure 8 shows a comparison of the

predicted hoop stress as a function of radial location both

with and without microscale cracking at the fiber-matrix

interface. While this is simply a demonstrative problem, it

shows the power of the multiscaling approach for structural

design. For example, without recourse to further experi-

mentation, the approach demonstrated here can be used to

determine the fiber volume fraction that will produce the

optimal structural configuration.

Conclusion

A multiscaling approach for modeling heterogeneous vis-

coelastic media, described herein, appears to be within

Increment
time

Obtain global 
solution

Obtain
microscale

solution

Obtain local 
solution
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time
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No

Increment
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Fig. 3 Flowchart showing multiscale computational algorithm
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Global Mesh Global Geometry

Local Mesh Local Geometry

Fig. 5 Three scale

axisymmetric cylinder problem

Fig. 6 Predicted damage at

three different radial positions

in axisymmetric cylinder

problem

Fig. 7 Predicted damage at

three different circumferential

positions in axisymmetric

cylinder problem
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reach of the design community. While it is only in infancy,

the results obtained herein indicate that it will not be long

before such algorithms are in common use.
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